API Reference
Onion.AdaLN
— TypeAdaLN(dim::Int, cond_dim::Int)
Adaptive Layer Normalization.
aln = AdaLN(5, 3)
h = randn(Float32, 5,10,1)
cond = randn(Float32, 3,1)
h = aln(h, cond)
Onion.Attention
— TypeAttention(
in_dim::Int, n_heads::Int, n_kv_heads=n_heads;
head_dim=in_dim÷n_heads, qkv_bias=false,
q_norm=identity, k_norm=identity,
out_init_scale=1,
)
Attention layer that supports both self-attention and cross-attention (as in Llama3).
Examples
Self-attention
in_dim = 256
n_heads = 8
n_kv_heads = 4
head_dim = 64
attn = Attention(in_dim, n_heads, n_kv_heads; head_dim)
seq_len = 10
batch = 2
x = randn(in_dim, seq_len, batch)
output = attn(x)
Onion.BlockDense
— TypeBlockDense(
d1 => d2, k;
σ=identity, bias=true, init=Flux.glorot_uniform)
A block-diagonal version of a dense layer. Equivalent to Flux.Dense
when k=1
.
Onion.Bottleneck
— TypeBottleneck(channels::Int; time_emb=false, emb_dim=256, dropout=0.0, activation=relu)
A bottleneck block for UNet architecture with optional time embeddings and dropout.
Arguments
channels::Int
: Number of input and output channelstime_emb=false
: Whether to use time embeddingsemb_dim=256
: Dimension of time embeddingsdropout=0.0
: Dropout probability (0.0 means no dropout)activation=relu
: Activation function to use
Examples
bn = Bottleneck(256, time_emb=true, emb_dim=256, dropout=0.2)
h = randn(Float32, 8, 8, 256, 1)
t = randn(Float32, 256, 1)
h = bn(h, t)
Onion.CrossFrameIPA
— TypeCrossFrameIPA(dim::Int, ipa; ln = Flux.LayerNorm(dim))
Constructs a layer that takes one embedding, and two sets of frames. Runs layernorm on the embedding, and then makes a cross-attention IPA call with one embedding but two frames. Useful for self-conditioning where two sets of frames need to communicate with each other.
Onion.DART
— TypeDART(transformer; mask=:causal)
"Doubly Auto-Regressive Transformer" (DART) is a convenience layer wrapping a transformer block that can be used to model auto-regressive data represented along two dimensions.
Examples
julia> dart = DART(TransformerBlock(64, 8));
julia> x = randn(Float32, 64, 4, 20);
julia> dart(x) |> size
(64, 4, 20)
Onion.DecoderBlock
— TypeDecoderBlock(in_channels::Int, out_channels::Int; time_emb=false, emb_dim=256, dropout=0.0, activation=relu)
A decoder block for UNet architecture with optional time embeddings and dropout.
Arguments
in_channels::Int
: Number of input channelsout_channels::Int
: Number of output channelstime_emb=false
: Whether to use time embeddingsemb_dim=256
: Dimension of time embeddingsdropout=0.0
: Dropout probability (0.0 means no dropout)activation=relu
: Activation function to use
Examples
dec = DecoderBlock(256, 128, time_emb=true, emb_dim=256, dropout=0.1)
h = randn(Float32, 8, 8, 256, 1)
skip = randn(Float32, 16, 16, 128, 1)
t = randn(Float32, 256, 1)
h = dec(h, skip, t)
Onion.DyT
— MethodDyT(dim::Integer; init_alpha::T = 0.5f0)
Make a Dynamic Tanh (DyT) layer for normalizing the input tensor.
See Transformers without Normalization for more details.
Onion.EncoderBlock
— TypeEncoderBlock(in_channels::Int, out_channels::Int; time_emb=false, emb_dim=256, dropout=0.0, activation=relu)
An encoder block for UNet architecture with optional time embeddings and dropout.
Arguments
in_channels::Int
: Number of input channelsout_channels::Int
: Number of output channelstime_emb=false
: Whether to use time embeddingsemb_dim=256
: Dimension of time embeddingsdropout=0.0
: Dropout probability (0.0 means no dropout)activation=relu
: Activation function to use
Examples
enc = EncoderBlock(3, 64, time_emb=true, emb_dim=256, dropout=0.1)
h = randn(Float32, 32, 32, 3, 1)
t = randn(Float32, 256, 1)
skip, h = enc(h, t)
Onion.FSQ
— TypeFSQ(l, chunk_size)
Finite Scalar Quantization. l
is the number of quantization levels. For a sequence with d
channels, the codebook size would be l^d
. chunk_size
is the number of channels that get combined/separated when chunk
/unchunk
are called.
Onion.FlexibleUNet
— TypeFlexibleUNet(;
in_channels=3,
out_channels=3,
depth=3,
base_channels=64,
channel_multipliers=[1, 2, 4],
time_embedding=false,
num_classes=0,
embedding_dim=128,
time_emb_dim=256,
dropout=0.0,
dropout_depth=0,
activation=relu
)
A flexible UNet architecture with configurable depth and channel dimensions. Supports optional time and class embeddings for diffusion models and conditional generation.
Arguments
in_channels=3
: Number of input channelsout_channels=3
: Number of output channelsdepth=3
: Number of encoder/decoder blocksbase_channels=64
: Base channel dimension (multiplied at each level)channel_multipliers=[1, 2, 4]
: Multipliers for channel dimensions at each leveltime_embedding=false
: Whether to use time embeddingsnum_classes=0
: Number of class labels for conditional generationembedding_dim=128
: Dimension for class embeddingstime_emb_dim=256
: Dimension for time embeddingsdropout=0.0
: Dropout probability to apply to inner layersdropout_depth=0
: Number of layers to apply dropout to, starting from the innermost layers (0 means no dropout). Maximum value is 1+depth (bottleneck + all encoding/decoding levels)activation=relu
: Activation function to use throughout the network
Examples
# Basic model without dropout
model = FlexibleUNet(
in_channels=3,
out_channels=3,
depth=4,
base_channels=32,
channel_multipliers=[1, 2, 4, 8],
time_embedding=true
)
# Model with dropout applied to the 3 innermost layers
model = FlexibleUNet(
in_channels=3,
out_channels=3,
depth=4,
base_channels=32,
channel_multipliers=[1, 2, 4, 8],
time_embedding=true,
dropout=0.2,
dropout_depth=3
)
x = randn(Float32, 32, 32, 3, 1)
t = randn(Float32, 1)
labels = [5]
y = model(x, t, labels)
Onion.Framemover
— TypeFramemover(dim::Int; init_gain = 0.1f0)
Differentiable rigid body updates (AF2-style).
Onion.GaussianFourierProjection
— TypeGaussianFourierProjection(embed_dim::Int, scale::T=32.0f0)
Creates a Gaussian Fourier feature projection for time embeddings. Used in diffusion models.
Arguments
embed_dim::Int
: Embedding dimension. Should be even.scale::T=32.0f0
: Scaling factor for the random weights.
Onion.IPAblock
— TypeIPAblock(dim::Int, ipa; ln1 = Flux.LayerNorm(dim), ln2 = Flux.LayerNorm(dim), ff = StarGLU(dim, 3dim))
For use with Invariant Point Attention, either from InvariantPointAttention.jl or MessagePassingIPA.jl. If ipablock.ipa
is from InvariantPointAttention.jl, then call ipablock(frames, x; pair_feats = nothing, cond = nothing, mask = 0, kwargs...)
If ipablock.ipa
is from MessagePassingIPA.jl, then call ipablock(g, frames, x, pair_feats; cond = nothing)
Pass in cond
if you're using eg. AdaLN
that takes a second argument.
Onion.LayerNorm
— TypeLayerNorm(dim::Int; eps::T=1f-6)
Layer Normalization.
ln = LayerNorm(64)
x = randn(Float32, 64, 10, 1)
y = ln(x)
Onion.Modulator
— TypeModulator(in_dim => out_dim; σ=sigmoid, op=*)
Takes an input Y
and a conditioning input X
and applies a gate to Y
based on X
.
See Gated Attention for Large Language Models
Examples
julia> gate = Modulator(32 => 64);
julia> Y = randn(Float32, 64);
julia> X = randn(Float32, 32);
julia> gate(Y, X) |> size
(64,)
Onion.MultidimRoPE
— MethodMultidimRoPE(; theta=10000f0)
Multi-dimensional Rotary Position Embedding (RoPE) for 2D, 3D, or higher-dimensional coordinate inputs. This is a fixed (non-learnable) generalization of the original RoPE from Su et al. (2021), where each rotary pair of channels is assigned to a specific coordinate dimension and rotated accordingly.
Example
dim, n_heads, n_kv_heads, seqlen = 64, 8, 4, 16
t = TransformerBlock(dim, n_heads, n_kv_heads)
h = randn(Float32, dim, seqlen, 1)
mask = 0
positions = randn(Float32, 3, seqlen, 1)
rope = MultidimRoPE(theta=10000f0)
h_out = t(h, positions, rope, mask) # self-attention with multi-dim RoPE
Onion.RMSNorm
— TypeRMSNorm(dim::Int; T=Float32, eps=1f-5, zero_centered=false)
Root Mean Square Layer Normalization. As used in Llama3.
Onion.ResidualBlock
— TypeResidualBlock(channels::Int; kernel_size=3, time_emb=false, emb_dim=256, dropout=0.0, activation=relu)
A ResNet-style residual block with optional time embeddings, dropout, and configurable activation.
Arguments
channels::Int
: Number of input and output channelskernel_size=3
: Size of convolutional kerneltime_emb=false
: Whether to use time embeddingsemb_dim=256
: Dimension of time embeddingsdropout=0.0
: Dropout probability (0.0 means no dropout)activation=relu
: Activation function to use (e.g., relu, swish, etc.)
Examples
# Basic block with dropout
rb = ResidualBlock(64, dropout=0.1)
# Block with time embeddings and custom activation
rb = ResidualBlock(64, time_emb=true, emb_dim=256, dropout=0.1, activation=swish)
# Usage
h = randn(Float32, 32, 32, 64, 1)
t = randn(Float32, 256, 1)
h = rb(h, t)
Onion.RoPE
— TypeRoPE(dim::Int, max_length; theta::T=10000f0)
Rotary Position Embeddings (as in Llama3).
dim = 64
n_heads = 8
n_kv_heads = 4
seqlen = 10
t = TransformerBlock(dim, n_heads, n_kv_heads)
h = randn(Float32, dim, seqlen, 1)
rope = RoPE(dim ÷ n_heads, 1000)
h = t(h, 1, rope[1:seqlen]) #Note the subsetting to match seqlen
Onion.STRINGRoPE
— TypeSTRINGRoPE(head_dim::Int, n_heads::Int, d_coords::Int; init_scale=0.001f0, theta=10000f0)
Multidimensional, learnable Rotary Position Embedding (RoPE) from Schneck et al. (2025), "Learning the RoPEs: Better 2D and 3D Position Encodings with STRING".
Example
head_dim = 64
n_heads = 8
d_coords = 3
rope = STRINGRoPE(head_dim, n_heads, d_coords)
x = rand(Float32, head_dim, 16, n_heads, 2) # (head_dim, seq_len, n_heads, batch)
positions = rand(Float32, d_coords, 16, 2) # (d_coords, seq_len, batch)
x_rot = rope(x, positions)
Onion.StarGLU
— TypeStarGLU(dim::Int, ff_hidden_dim::Int; act=Flux.swish)
Gated Linear Unit with flexible activation function (default: swish
, making it a SwiGLU layer as used in Llama3).
l = StarGLU(6, 8)
h = randn(Float32, 6, 10, 1)
h = l(h)
Onion.TimeEmbedding
— TypeTimeEmbedding(embed_dim::Int, num_classes::Int, embedding_dim::Int)
Creates time and optional class embeddings for diffusion models.
Arguments
embed_dim::Int
: Output dimension for time embeddingsnum_classes::Int
: Number of classes for conditional generationembedding_dim::Int
: Dimension for class embeddings
Examples
time_emb = TimeEmbedding(256, 10, 128)
t = randn(Float32, 16)
labels = rand(1:10, 16)
h = time_emb(t, labels)
Onion.TransformerBlock
— TypeTransformerBlock(dim::Int, n_heads::Int, n_kv_heads::Int = n_heads, ff_hidden_dim = 4 * dim; norm_eps=1f-5, qkv_bias=false)
Transformer block for GQAttention (as in Llama3).
dim = 64
n_heads = 8
n_kv_heads = 4
seqlen = 10
rope = RoPE(dim ÷ n_heads, 1000)
t = TransformerBlock(dim, n_heads, n_kv_heads)
h = randn(Float32, dim, seqlen, 1)
#Use without a mask:
h = t(h, 1, rope[1:seqlen])
#Use with a causal mask:
mask = Onion.causal_mask(h)
h = t(h, 1, rope[1:seqlen], mask)
Onion.chunk
— Methodchunk(x, q::FSQ, chunk_size)
Make a long quantized sequence shorter and wider (to make it more transformer-friendly). x
may have a batch dimension. Contiguous chunks of chunk_size
are recoded as a single integer in the product space q.l^chunk_size
`.
Onion.cross_att_padding_mask
— Methodcross_att_padding_mask(padmask, other_dim; T=Float32)
Takes a sequence-level padmask
and a dimension other_dim
and returns a cross-attention mask that is length-by-other_dim-by-batch. This prevents information flow from padded key
positions to any query
positions (but ignores padding in the query
positions, because nothing should flow out of those).
Examples
julia> cross_att_padding_mask([1 1; 1 1; 1 0], 4)
3×4×2 Array{Float32, 3}:
[:, :, 1] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
-Inf -Inf -Inf -Inf
Onion.falses_like
— Methodfalses_like(x::AbstractArray, [T=eltype(x)], [dims=size(x)])
Returns an array of falses of type Bool
with an array type similar to x
. The dimensions default to size(x)
.
falses_like(args...)
is equivalent to like(false, Bool, args...)
Onion.glut
— Methodglut(t::AbstractArray, d::Int, pos::Int)
glut(t::Real, d::Int, pos::Int) = t
glut
adds dimensions to the middle. The resulting array will have d
dimensions. pos
is where to add the dimensions. pos=0
adds dims to the start, pos=1
after the first element, etc. If t
is scalar, it is returned unmodified (because scalars don't need to match dims to broadcast).
Typically when broadcasting x .* t
, you would call something like glut(t, ndims(x), 1)
.
Onion.like
— Functionlike(x::AbstractArray, array::DenseArray, T=eltype(x))
Like like(v, x::AbstractArray, args...)
, but an arbitrary AbstractArray
, such as an AbstractRange
, can be instantiated on device.
Examples
julia> like(1:5, rand(1))
5-element Vector{Int64}:
1
2
3
4
5
julia> like((1:5)', rand(1), Float32)
1×5 Matrix{Float32}:
1.0 2.0 3.0 4.0 5.0
Onion.like
— Methodlike(v, x::AbstractArray, [T=eltype(x)], [dims=size(x)])
Returns an array of v
(converted to type T
) with an array type similar to x
. The element type and dimensions default to eltype(x)
and size(x)
.
like(v, x::AbstractArray, args...)
is equivalent to fill!(similar(x, args...), v)
, but the function is marked as non-differentiable using ChainRulesCore
.
Onion.ones_like
— Methodones_like(x::AbstractArray, [T=eltype(x)], [dims=size(x)])
Returns an array of ones with an array type similar to x
. The element type and dimensions default to eltype(x)
and size(x)
.
ones_like(args...)
is equivalent to like(true, args...)
Onion.sample_uniform_causal_chunk_mask
— Methodsample_uniform_causal_chunk_mask(x, chunk_size)
Generate a mask of all the "chunks" towards the end of the sequence, separately for each batch. The mask dims will be length-by-batch, but contiguous chunks of chunk_size
will be always be masked together.
Onion.self_att_padding_mask
— Methodself_att_padding_mask(padmask; T=Float32)
Takes a sequence-level padmask
(ie. length-by-batch, where 0 indicates a padded position) and returns a (non-causal) self-attention mask that is length-by-length-by-batch and which prevents information flow from padded positions to unpadded positions.
Examples
julia> self_att_padding_mask([1 1; 1 1; 1 0])
3×3×2 Array{Float32, 3}:
[:, :, 1] =
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 -Inf
0.0 0.0 -Inf
-Inf -Inf 0.0
Onion.trues_like
— Methodtrues_like(x::AbstractArray, [T=eltype(x)], [dims=size(x)])
Returns an array of trues of type Bool
with an array type similar to x
. The dimensions default to size(x)
.
trues_like(args...)
is equivalent to like(true, Bool, args...)
Onion.unchunk
— Methodunchunk(x, q::FSQ)
Take a sequence that has been chunk
ed, and expand it back to the original length. x == unchunk(chunk(x,q),q)
should be true.
Onion.zeros_like
— Methodzeros_like(x::AbstractArray, [T=eltype(x)], [dims=size(x)])
Returns an array of zeros with an array type similar to x
. The element type and dimensions default to eltype(x)
and size(x)
.
zeros_like(args...)
is equivalent to like(false, args...)